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Abstract—We studied the importance of proper model assumption in the context of Bayesian phylogenetics by examining
>5,000 Bayesian analyses and six nested models of nucleotide substitution. Model misspecification can strongly bias bipar-
tition posterior probability estimates. These biases were most pronounced when rate heterogeneity was ignored. The type
of bias seen at a particular bipartition appeared to be strongly influenced by the lengths of the branches surrounding that
bipartition. In the Felsenstein zone, posterior probability estimates of bipartitions were biased when the assumed model was
underparameterized but were unbiased when the assumed model was overparameterized. For the inverse Felsenstein zone,
however, both underparameterization and overparameterization led to biased bipartition posterior probabilities, although
the bias caused by overparameterization was less pronounced and disappeared with increased sequence length. Model
parameter estimates were also affected by model misspecification. Underparameterization caused a bias in some parameter
estimates, such as branch lengths and the gamma shape parameter, whereas overparameterization caused a decrease in the
precision of some parameter estimates. We caution researchers to assure that the most appropriate model is assumed by
employing both a priori model choice methods and a posteriori model adequacy tests. [Bayesian phylogenetic inference;

convergence; Markov chain Monte Carlo; maximum likelihood; model choice; posterior probability.]

Model choice is becoming a critical issue as the num-
ber of available models of nucleotide evolution in-
creases rapidly. Recent studies have shown that ad-
equate model choice is important by demonstrating
that violations of model assumptions can produce bi-
ased results (Felsenstein, 1978; Huelsenbeck and Hillis,
1993; Yang et al., 1994; Swofford et al., 2001). When
the model assumed is overparameterized (too com-
plex relative to the true underlying model), unneces-
sary sampling variance is introduced from estimation
of extra parameters. This added variance may compro-
mise phylogenetic accuracy (Cunningham et al., 1998).
Cases in which the model assumed is underparameter-
ized (too simple relative to the true underlying model)
are especially problematic for phylogeny estimation be-
cause of the phenomenon of long-branch attraction,
where the confidence in estimation of an incorrect bi-
partition increases as more data are included (Swofford
et al., 2001). Most studies of the importance of model
choice have concentrated on the four-taxon case, often
comparing maximum parsimony and /or distance-based
methods with maximum-likelihood methods under sim-
ple model assumptions (Felsenstein, 1978; Huelsenbeck
and Hillis, 1993; Gaut and Lewis, 1995; Swofford et al.,
2001).

Traditional likelihood, parsimony, and distance-based
methods of phylogeny reconstruction are giving way
as Bayesian approaches to phylogeny inference rapidly
gain in popularity (Huelsenbeck et al., 2001). Traditional
methods yield a single (best) tree, and the uncertainty of
each clade is assessed through repeatability tests, such
as the bootstrap. The end product of a Bayesian analysis
is fundamentally different, consisting of a distribution
of “best” trees with associated model parameters sam-
pled in proportion to their posterior probabilities. Un-
certainty in the phylogeny and parameter estimates is
expressed in the posterior probability distribution. (For
amore detailed introduction to the use of Bayesian meth-
ods in phylogenetics, see Huelsenbeck et al., 2001.)

Because Bayesian methods have only recently
emerged at the forefront of phylogenetics, research con-
cerning the proper application of these methods and
the interpretation of their results is still inadequate
(Huelsenbeck et al., 2002). Progress has been made with
regard to the relationship between bipartition poste-
rior probabilities and nonparametric bootstrap values,
although the relative accuracy of the two measures is
still being debated (Suzuki et al., 2002; Wilcox et al.,
2002; Alfaro et al., 2003; Cummings et al., 2003; Douady
et al., 2003; Erixon et al., 2003). Further exploration
of at least three other questions is especially critical:
(1) how sensitive are these analyses to prior probabil-
ity assumptions, (2) what is the most appropriate way
to check for convergence and stationarity of Markov
chains in the context of phylogenetics, and (3) how im-
portant is proper model assumption within the Bayesian
framework?

We present here an analysis that addresses the
third question. We investigated the effect of model
misspecification on bipartition posterior probabilities,
branch-length estimates, and other substitution-model
parameter estimates by analyzing >5,000 Bayesian runs
under a variety of nucleotide substitution models. To ex-
plore further how bipartition posterior probabilities are
affected by model misspecification, we examined two
special cases in which adequate model assumption is
known to be important: the Felsenstein zone and the in-
verse Felsenstein zone (Swofford et al., 2001). We also
discuss here the importance of proper model assumption
and what can be done to assure that the most appropriate
model available is assumed.

METHODS
Data Set Simulation

We selected six nested models of nucleotide substi-
tution for our analyses: JC (Jukes and Cantor, 1969),
K2P (Kimura, 1980), HKY (Hasegawa et al., 1985), GTR
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(Lanave et al., 1984; Tavaré, 1986; Rodriguez et al., 1990),
GTR+T (Steel et al., 1993; Yang, 1993), and GTR+I'+I
(Gu et al.,, 1995; Waddell and Penny, 1996). We simu-
lated 100 replicate data sets of 1,000 bp sequence length
(Seq-Gen 1.2.5; Rambaut and Grassly, 1997) assuming
each of these six substitution models and the following
parameter values (as appropriate for each model): tran-
sition/transversion ratio (k) = 2.0, wa = 0.35, 7c = 0.22,
G = 0.18, T = 0.25, rcr = 30.7, rcg = 0.225, TaAG = 7.35,
rat = 6.125, rac = 2.675, gamma shape parameter («) =
0.67256, and proportion of invariable sites = 0.25. With
the exception of the transition/transversion ratio and the
proportion of invariable sites, all of these parameter val-
ues were obtained from a mitochondrial DNA analysis
used to construct a phylogeny of North American cho-
rus frogs (Pseudacris; Moriarty and Cannatella, 2004). We
used data sets of 1,000 bp because this length was typical
of empirical data sets at the onset of this study.

The 30-taxon tree used to simulate the data sets (tree
1) was generated using DNA-Sim (program written by
A.R.L) that assumes a birth-death process (speciation
rate = 107*, extinction rate = 10~°). The branch lengths
were assigned in the following fashion. We numbered
the internal branches from 0 to 26, choosing the order
of the branches randomly, and then each branch was
assigned a branch length using the following equation:
f(x) = 10%%/263, where x is the number assigned to that
branch. This method of assigning branch lengths assured
that a wide range of bipartition posterior probabilities
would result from our Bayesian analyses. The proce-
dure was repeated for the 30 external branches, using the
equation: f(x) = 10*/2°3, Tree 1 is illustrated in Figure 1.

Bayesian Analyses

To investigate the effect of model misspecification on
bipartition posterior probabilities, we performed 3,600
Bayesian analyses using the program MrBayes 3.0b3
(Huelsenbeck, 2001; Huelsenbeck and Ronquist, 2001).
For each of the 600 simulated data sets, we conducted
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FIGURE 1. Tree 1, was used to simulate data sets for the first set of
analyses. The topology for this tree was generated using a birth-death
process. The branch lengths were assigned randomly.
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FIGURE2. Study design of 36 model combinations. Shaded squares
represent the model combinations in which the assumed model
matches the simulated model. Model combinations above the diag-
onal contain an assumed model missing one or more parameters of the
simulated model. Model combinations below the diagonal contain an
assumed model including one or more parameters not present in the
simulated model.

six MrBayes searches, each assuming a different one of
the nested models. Thus, we examined 36 model combi-
nations: 15 in which the assumed model was underpa-
rameterized, 15 in which the assumed model was over-
parameterized, and 6 in which the assumed model was
appropriate relative to the model used to simulate the
data sets. This design is depicted in Figure 2. We com-
pared results from runs that used the same data set but
were analyzed under different substitution models. Us-
ing nested substitution models allowed us to systemat-
ically test the effect of the presence or absence of each
type of parameter on the estimation of bipartition pos-
terior probabilities, branch lengths, and other model pa-
rameters. We limited our sampling to 100 replicates be-
cause of computational constraints. To assure that results
obtained from 100 replicates were reliable, we analyzed
an additional 400 replicates for one model combination
(GTR+T+I-JC). We also assessed the sensitivity of our
sample design using power analyses.

We conducted extensive preliminary analyses to de-
termine the sample size, sample interval, and burn-in
period appropriate for our data sets. The goal of these
preliminary analyses was to determine the conditions
that minimized the amount of variation among inde-
pendent Bayesian analyses run under identical condi-
tions. We assumed default priors for all parameters ex-
cept for the GTR rate matrix. For the GTR rate matrix,
a flat prior yielded incorrect substitution rate estimates
and poor convergence to the true posterior distribution.
This phenomenon has been studied more extensively
by Zwickl and Holder (unpubl. data). An exponential
prior (revmatpr = exponential(0.2)) allowed for reason-
able convergence to the true posterior distribution when
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the correct model was assumed (by reasonable conver-
gence we mean that the maximum likelihood estimate of
each parameter was at or very near the true value). Four
Markov chains with a temperature of 0.15 assured proper
mixing. Each MrBayes run spanned 500,000 genera-
tions. We sampled every 25 generations, yielding 20,000
total samples per run. Based on our preliminary tests,
we chose an appropriate burn-in time of 25,000 genera-
tions (1,000 samples). Thus, each run was analyzed using
19,000 post-burn-in samples.

Convergence Testing

We employed several methods to assure that our runs
had converged on the posterior distribution and that
we had collected enough samples to obtain reliable re-
sults. First, we examined the stationarity of likelihood
scores for all 3,600 runs performed. However, because
of the large number of runs we could not examine each
one independently. Instead, we visualized the likelihood
curves (generation plotted on the x-axis, log likelihood
plotted on the y-axis) for all 100 replicates of each model
combination on the same graph, plotting only those sam-
ples for which the likelihood score was greater than that
of any previous sample (data not shown). By plotting
the likelihood scores in this manner, we quickly identi-
fied any runs that failed to reach stationarity within the
chosen burn-in period.

Second, we examined the convergence of bipartition
posterior probabilities, maximum likelihood scores, and
model parameter estimates. We expect two converged
runs performed on the same data set and under the same
model assumptions to produce very similar bipartition
posterior probability distributions, maximum likelihood
scores, and model parameter estimates. Thus, a compar-
ison of results from duplicate runs can be used to test for
convergence. However, because of computational con-
straints we could not duplicate all 3,600 runs. Instead,
we chose to concentrate on the eight model combina-
tions in which the simulated and assumed models were
either equivalent (e.g., JC-JC) or showed the greatest dis-
parity (i.e., JC-GTR+TI'+Iand GTR+T' +I-JC). The dupli-
cate runs were compared by observing the degree of cor-
relation (across all 100 replicates) of bipartition posterior
probabilities, maximum likelihood scores, and model pa-
rameter estimates. Checking for convergence in this way
required an additional 800 Bayesian analyses.

Third, we checked the nature of the tree space to as-
sure that 500,000 generations allowed convergence upon
and proper sampling of the true posterior distribution.
We repeated the analysis of five randomly chosen repli-
cates from each of the four extreme model combinations
(JC-JC, JC-GTR+T'+I, GTR+T'+I-JC, and GTR+TI'+I-
GTR+TI"+]I) but allowed these chains to run for 5,000,000
generations. We then compared the posterior distribu-
tion sampled in the shorter (500,000 generations) runs
with that sampled in the longer (5,000,000 generations)
runs to determine whether shorter chains were prone to
entrapment in local optima. Each of the 20 pairs of pos-
terior distributions was compared using the Mesquite

(Maddison and Maddison, 2003) module Tree Set Viz
(Amenta and Klinger, 2002). Tree Set Viz uses multidi-
mensional scaling to represent the relationships among
topologies (in this case, the topologies in the posterior
distribution) as a scatter of points in two-dimensional
space. The software arranges the points such that they
group according to the distance between the trees (dis-
tance between trees was calculated using Robinson—
Foulds differences; Robinson and Foulds, 1981). In
addition to the visual comparisons, we compared the
posterior distributions of topologies by examining the
correlation of posterior probabilities of the topologies
found in the shorter runs and the posterior probabilities
of the topologies found in the longer runs.

Determining the Effects of Model Misspecification

We studied the effects of model misspecification on
estimates of bipartition posterior probabilities, branch
lengths, and other model parameters. Because we simu-
lated the data sets, we know the true model parameter
values and can compare those values with the estimates
obtained through our Bayesian analysis. However, we do
not have true values for the bipartition posterior proba-
bilities (though we know which bipartitions are correct,
we do not know their posterior probabilities a priori be-
cause these will depend on the data set assumed). Con-
sequently, we compared the bipartition posterior prob-
ability estimates obtained when an incorrect model was
assumed with the estimates that were obtained when the
correct model was assumed. This procedure tells us the
effect of model misspecification relative to the results that
would have been obtained had the correct model been
assumed. This comparison gives us a way to measure
the bias in bipartition posterior probability estimates in-
duced by model misspecification.

How might biased bipartition posterior probabilities
affect conclusions regarding the relationships among
taxa? To answer this question, we specified a rule for
deciding whether a particular observed bipartition was
true based on comparison of the posterior probability of
that bipartition to a predetermined threshold (the thresh-
old varied from 0.5 to 1.0). For example, a threshold of
0.5 implies that all bipartitions with a posterior probabil-
ity >0.5 are accepted as true (i.e., all bipartitions in the
majority-rule consensus tree are accepted). Because we
know the true bipartitions, we can use the decision rule
to estimate the probability of type I and type II errors
for each posterior distribution observed. The probabil-
ity of type I error was estimated as the proportion of
true bipartitions observed that were rejected based on
their posterior probability. Conversely, the probability of
type II error was estimated as the proportion of false bi-
partitions observed that were accepted as true. We com-
pared the probabilities of type I and type II error across
the 36 model combinations to see how model misspeci-
fication might affect conclusions about the relationships
among taxa.

Model misspecification may negatively affect pa-
rameter estimation by either decreasing accuracy or
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decreasing precision (Cunningham et al., 1998). To as-
sess how the accuracy of parameter estimates may be
affected by model misspecification, we compared (for
each parameter) the maximum likelihood estimate of
the parameter obtained when the correct model was as-
sumed with that obtained when the model was misspec-
ified. To quantify the degree of bias for each parameter,
we employed the two-tailed, paired-sample ¢-test (Zar,
1999). In this case, we are testing whether the distribu-
tion of differences (value assuming correct model minus
value assuming incorrect model) is significantly different
from zero. We calculated the P value associated with the
amount of bias observed for all applicable model combi-
nations in which the model was misspecified. To assess
how the precision of parameter estimates may be affected
by model misspecification, we repeated these tests using
the width of the 95% credible set from the posterior distri-
bution of the parameter as our measure of precision. For
each t-test performed, we estimated the minimum differ-
ence in accuracy and precision that we are able to detect
99% of the time (8 = 0.01), given a level of significance
of 0.01 and the variance estimated from the distribution
of differences (Zar, 1999).

Robustness Tests

To test for robustness of our results, we performed a
second set of analyses assuming a different topology and
set of model parameters. Because of time constraints,
we focused on the four extreme model combinations:
JCJC, JC-GTR+T+I, GTR+T'+I-JC, and GTR+TI'+I-
GTR+4TI'+I. The parameter values chosen were my =
0.313735, nc = 0.285552, ng = 0.18302, nr = 0.217693,
et = 33.79102, Icg = 0.55726, TaAGg = 11.10442, TAT =
3.44797, rac = 4.16568, gamma shape parameter («) =
0.583564, and proportion of invariable sites = 0.454113.
These values were obtained from a phylogenetic analy-
sis of Siluriformes (D. Hillis, unpubl. data). We created a
16-taxon tree (tree 2, Fig. 3) containing structures that are
difficult to recover when the assumed substitution model
is inappropriate, the structures found in the Felsenstein
and inverse Felsenstein zones (Swofford et al., 2001).
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FIGURE 3. Tree 2 was used to simulate data sets for the second set
of analyses. This tree contains two Felsenstein structures (F; and F,)
and two inverse Felsenstein structures (I; and I,). Internal nodes are
labeled for reference.

Tree 2 contained two Felsenstein structures (containing
two long branches separated by a third, much shorter
branch) and two inverse Felsenstein structures (contain-
ing a pair of long branches that are adjacent to a pair
of much shorter branches). We included two structures
of each type to provide some variation in the difficulty of
the problem, although we could not perform an exten-
sive analysis. The branches separating the four structures
were fairly long (0.5 substitutions per site), allowing us
to avoid confounding effects of interactions among two
or more structures. We assumed the same prior distribu-
tions, sample size, sample interval, and burn-in times.
The 800 Bayesian analyses (400 unique runs, each dupli-
cated) conducted under these conditions were analyzed
in a fashion similar to that for the previous analysis.

We constructed tree 2 using two Felsenstein structures
and two inverse Felsenstein structures with the hopes of
determining how the properties of a particular biparti-
tion affect the type of bias produced by model misspeci-
fication. We can determine the effect of misspecification
for each bipartition by comparing the posterior probabil-
ity obtained for that bipartition when the model is mis-
specified with the posterior probability obtained when
the model is correctly specified. The proper test for this
type of comparison, given that the distributions of bi-
partition posterior probabilities across the 100 replicates
are neither normal nor homoschedastic, is the nonpara-
metric sign test (Zar, 1999). We employed this test for
each of the bipartitions in tree 2 that are part of either a
Felsenstein structure or an inverse Felsenstein structure.

RESULTS
Bipartition Posterior Probabilities

Model misspecification can strongly bias bipartition
posterior probability estimates (Fig. 4). Although over-
parameterization had no noticeable effect on biparti-
tion posterior probability estimates, underparameteri-
zation produced a strong bias. The bias observed for a
particular bipartition depends on how well supported
that bipartition is when the correct model is assumed:
well-supported bipartitions tend to be overestimated,
whereas poorly supported bipartitions tend to be un-
derestimated. Although this is the general trend, the ef-
fect of model misspecification on a particular bipartition
is likely to be affected by the length of the branch at
that bipartition, the length of the branches surround-
ing that bipartition, and the data set used to infer the
phylogeny. Results from an additional 400 replicates for
the model combination GTR+I'+I-JC (see Fig. 5) suggest
that increasing sampling efforts would not have affected
our qualitative results regarding the effect of model
misspecification on bipartition posterior probability
estimates.

The largest bias in bipartition posterior probabilities
was seen when the assumed model failed to incorpo-
rate rate variation across sites. This bias was especially
pronounced when gamma distributed rate heterogeneity
was neglected. We also observed that failing to account
for unequal rates of base substitution (i.e., the transition
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FIGURE4. The effect of model misspecification on bipartition posterior probability estimates. The six graphs on the shaded diagonal demon-
strate the convergence of the bipartition posterior probabilities for 100 pairs of independent runs when the correct model is assumed. Each of
the 30 unshaded graphs compare the bipartition posterior probabilities obtained when the correct model was assumed (plotted on the x-axis)
with those obtained when an incorrect model was assumed (plotted on the y-axis). The posterior probabilities of all 27 true bipartitions are
plotted on the same graph for all 100 replicates, yielding 2,700 points per graph. To determine the effect of model misspecification involving a
single type of parameter, compare a graph on the shaded diagonal with a graph either directly above (underparameterized) or directly below
(overparameterized). Only the bipartitions found in the true tree (tree 1) are represented.

bias or the GTR rate matrix) led to slightly biased biparti-
tion posterior probability estimates. However, inappro-
priately assuming equal base frequencies had very little
effect on bipartition posterior probability estimates un-
der the conditions tested.

Bias caused by underparameterization resulted in an
increased incidence of type Il error (Fig. 6), i.e., assuming
an underparameterized model led to the acceptance of
a greater number of false bipartitions. This pattern was
consistent across all threshold values tested. The oppo-
site trend occurred for type I error; assuming an underpa-
rameterized model resulted in the rejection of fewer true
bipartitions. As one might expect, increasing the thresh-

old resulted in an increase in type I error and a decrease in
type Il error. Overparameterization had very little effect
on the probability of either type of error.

Branch Lengths and Other Model Parameters

Branch lengths were also affected by model mis-
specification. Model underparameterization led to
underestimated branch lengths, especially for long
branches (Fig. 7). Failing to account for rate hetero-
geneity had the largest effect on branch-length esti-
mates, although neglecting to include other parameters
also produced slightly underestimated branch lengths.
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FIGURE5. Graph of 400 additional replicates for the model combi-
nation GTR4T'+I-JC. Compare this graph with the graph in the upper
right corner of Figure 4.

Overparameterization produced little if any bias in
branch-length estimates.

In many cases, parameter estimates were biased when
the model assumed was underparameterized (Fig. 8).
However, estimation of rate matrix parameters seems to
be fairly robust to model misspecification, at least under
the conditions tested. Nucleotide base frequencies were
only biased when the GTR rate matrix was inappropri-
ately neglected. Estimates of the gamma shape parame-
ter appeared to be biased when the proportion of invari-
able sites was inappropriately included or ignored. The
gamma shape parameter was also biased when the sim-
ulated model assumed homogeneity of rates across sites
(Fig. 9). This result is expected because the true value of
« in these cases is infinity.

We observed decreased precision of some param-
eter estimates when the assumed model was over-
parameterized (Fig. 8). Tree length (TL), base frequen-
cies, and the gamma shape parameter showed a strong
decrease in precision under some conditions. Estimates
of rate matrix parameters and transition bias appeared
to be more robust to changes in precision with model
overparameterization. Not surprisingly, underparame-
terization tended to result in an increase in the precision
of most parameter estimates.

Our model design allowed us to detect small changes
in accuracy and precision for estimates of TL, «, and
base frequencies and moderate changes for estimates of
rate matrix parameters and «. The ranges in the min-
imum detectable difference estimates for our accuracy
tests are as follows: TL, 0.015-0.030; «, 0.096-0.104; 7,
0.005-0.006; 7c, 0.004-0.007; ng, 0.004-0.005; 7, 0.004—
0.007; rct, 2.969-3.466; rcg, 0.072-0.099; rac, 0.799-0.886;
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FIGURE 6. The effect of model misspecification on type I and type
IT error rates for hypothesis tests using bipartition posterior probabili-
ties. The threshold is the posterior probability below which a particular
bipartition is rejected. Type I error was calculated as the proportion of
true bipartitions observed that were rejected based on their posterior
probability. Conversely, type II error was calculated as the propor-
tion of false bipartitions observed that were accepted as true. The as-
sumed models are JC (O), K2P (¢), HKY (A), GTR (0), GTR+T (x), and
GTR+T+I (4). Each point represents the average across 100 replicates
for the model combination depicted.

rar, 0.605-0.760; rac, 0.304-0.351; «, 0.126-0.169. The
ranges in the minimum detectable difference estimates
for our precision tests are as follows: TL, 0.002-0.011; «,
0.007-0.009; s, 4 x 107%-0.001; 7¢c, 4 x 1074-0.001; 7,
4 x 1074-0.001; 71, 4 x 107-0.001; rcr, 2.229-2.666; rcG,
0.024-0.052; raG, 0.499-0.559; rat, 0.406-0.480; roc, 0.177—
0.229; &, 0.152-0.174. These results suggest, for example,
that we would be able to detect a difference of <0.006 be-
tween the maximum likelihood estimate of 7 obtained
when the model was correctly assumed and the estimate
obtained when the model was misspecified. Given that
the estimate for this parameter was always >0.268 (for
the applicable model combinations), we would have a
99% chance of detecting a change on the order of 2.2%
in the maximum likelihood estimate of 7. Likewise, we
would be able to detect a difference of 0.001 between
the width of the 95% credible set of wo obtained when
the correct model was assumed and the width obtained
when the model was misspecified. Given that the esti-
mate for this parameter was always >0.036 (for the appli-
cable model combinations), we would have a 99% chance
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FIGURE7. The effect of model misspecification on branch-length estimates. The format for this figure is the same as that for Figure 4, except
that the values plotted are the maximum likelihood estimates of the branch lengths (when the maximum likelihood tree did not contain a
particular true internal branch, no value was plotted). Only internal branches found in the true tree are represented here. Plots of external

branches demonstrate very similar results.

of detecting a change on the order of 2.8% in the width
of the 95% credible set.

Convergence

We observed adequate convergence of bipartition pos-
terior probabilities (Fig. 4) and model parameter es-
timates (data not shown). When observing likelihood
burn-in plots, we found that all runs reached station-
arity before 25,000 generations, the chosen burn-in time.
Good convergence of bipartition posterior probabilities
can be observed in correlation plots of the duplicate runs
(see the shaded diagonal of Fig. 4). These plots demon-
strate the congruence of bipartition posterior probabil-
ity distributions between pairs of independent Bayesian

analyses (model combinations not shown, JC-GTR+TI'+I
and GTR+T'+I-JC, demonstrated a pattern very similar
to that seen in the diagonal of Fig. 4). Posterior distribu-
tions of the substitution model parameters were congru-
ent with the true parameter values (denoted by arrows in
Fig. 9) when the correct model was assumed. Parameter
estimates were also very similar between independent
runs under the same conditions (data not shown). More-
over, running the Markov chains for 5,000,000 instead
of 500,000 generations did not substantially change the
resulting sample taken from the posterior distribution
of topologies; the posterior distributions of the shorter
and longer runs were congruent in all 20 visual com-
parisons made using Tree Set Viz (data not shown). We
also observed a strong correlation of topology posterior
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FIGURE 8. The effect of model misspecification on the accuracy and precision of parameter estimates. TL = tree length. (a) The maximum
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paired-sample t-test across 100 replicates.

probabilities between long and short runs for all four
model combinations tested (data not shown).

Robustness Tests

The results of the second set of analyses, which inves-
tigated Felsenstein and inverse Felsenstein structures,
agreed with those of the first set, although the bias was
even more pronounced (Fig. 10). The one exceptionis that
in the second set of analyses we were able to detect a bias
in bipartition posterior probabilities caused by model
overparameterization under some conditions. However,
this bias was much less pronounced than the bias caused
by underparameterization. The branch lengths were also
more strongly biased by underparameterization under
the second set of conditions, although this effect could
be due to the fact that branches in tree 2 (Fig. 3) were
longer than those in tree 1 (Fig. 1).

We were surprised to observe a slight bias in bipar-
tition posterior probabilities when the assumed model
was overparameterized (Fig. 10a). Other authors have

found similar patterns when using simulated data sets
of 1,000 nucleotides but found that the bias disappeared
with increased sequence length (Sullivan and Swofford,
2001; Swofford et al., 2001). To determine whether the
bias we observed was also attributable to sequence
length, we constructed data sets of length 5,000, 10,000,
and 50,000 nucleotides by successively concatenating
randomly chosen data sets (without replacement) from
the pool of 100 replicate data sets used in the robust-
ness tests. When these data sets were analyzed in the
same fashion as were those containing 1,000 nucleotides,
we found that increasing sequence length corrected the
slight bias seen in the case of overparameterization but
amplified the already large bias seen in the case of un-
derparameterization (data not shown).

After examining more carefully how model misspeci-
fication affected the posterior probabilities of each of the
bipartitions, we found that posterior probabilities of bi-
partitions found in Felsenstein structures were biased by
underparameterization but not overparameterization.
For three of the four bipartitions found in Felsenstein
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FIGURE 9. The effect of model misspecification on estimates of base frequencies (a), the gamma shape parameter « (b), the transition bias
« (c), substitution rates (d), tree length (TL) (e), and the proportion of invariable sites (f). The assumed model is labeled on the x-axis, and

the simulated model is labeled in the alternating panels; each panel groups the model combinations that share the same simulated model.
The maximum likelihood estimate (averaged across 100 replicates) is plotted for model combinations in which the assumed model is correct

(@), overparameterized ((J), or underparameterized (¢). Vertical bars represent the range of the 95% credible set, also averaged across the 100

replicates. The effect of model misspecification can be observed by comparing points represented by solid circles with other points within the

same panel. Arrows indicate true parameter values (but are only pertinent to those model combinations where the simulated model includes

the parameter of interest).
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FIGURE10. The effect of model misspecification on bipartition pos-
terior probability (a) and branch-length estimates (b) for the second set
analyses, which focus on Felsenstein and inverse Felsenstein structures.
The formats are the same as those for Figures 4 and 7, respectively. Note
the extreme effect of model underparameterization on bipartition pos-
terior probabilities and branch-length estimates.

structures, a significant number of replicates showed a
decrease in the bipartition posterior probability when
the assumed model was underparameterized (one-tailed
paired sign test, « =0.05; node 0: P =1.84 x 1071, node 2:
P =332x 1073 node7: P =9.05 x 1078, node 9: P =
1.53 x 1077). We attribute the one exception to type Il
error. However, when the assumed model was overpa-
rameterized no significant bias was observed for any of
the four bipartitions (node 0: P = 3.09 x 107!, node 2:
P =795 x 1072, node 7: P =5.00 x 10~!, node 9: P =
419 x 107h).

For bipartitions found in inverse Felsenstein struc-
tures, we found that both overparameterization and un-
derparameterization produced a bias in bipartition pos-
terior probability estimates. The direction of the bias in
each case depended upon whether the particular bipar-
tition was adjacent to two long tips or two short tips.
When the assumed model was underparameterized, a
significant number of replicates showed a decrease in
the posterior probabilities of bipartitions closest to two
long tips (node 3: P = 1.32 x 107%, node 10: P = 9.05 x
107%), and a significant number of replicates showed an
increase in the posterior probabilities of bipartitions clos-
est to two short tips (node 5: P =7.97 x 107%, node 12:
P = 7.89 x 10~%!). Overparameterization produced the
opposite bias for all nodes in the inverse Felsenstein
structures: a significant number of replicates showed an
increase in the posterior probabilities of bipartitions clos-
est to two long tips (node 3: P = 4.43 x 1072, node 10:
P =9.16 x 1075), and a significant number of replicates
showed a decrease in the posterior probabilities of bipar-
titions closest to two short tips (node 5: P = 1.20 x 1073,
node 12: P =7.81 x 107%).

The sign test does not tell us the magnitude of the bias,
only the direction of the bias. However, Figure 10a clearly
illustrates that the bias in bipartition posterior probabil-
ities due to underparameterization is much more pro-
nounced than that due to overparameterization. The bi-
partition posterior probabilities for nodes 1,4, 6,8, and 11

were always at or very near 1.0 for all 100 replicates and
all model combinations; thus, our results were not influ-
enced by interactions among two or more structures.

DISCUSSION

Model underparameterization can strongly bias es-
timates of bipartition posterior probabilities, branch
lengths, and other model parameters. The bias is es-
pecially severe when rate heterogeneity is neglected.
This result is not surprising; previous researchers
have demonstrated that ignoring rate heterogeneity
among sites can bias topology estimation (Kuhner and
Felsenstein, 1994; Yang et al., 1994; Sullivan et al., 1995;
Lockhart et al., 1996) and can lead to underestimation of
branch lengths (Golding, 1983; Yang et al., 1994). Our re-
sults also agree with those of previous studies of model
misspecification in that the bias seen in branch-length
estimates increases disproportionately as branch length
increases (Golding, 1983).

Results from our analyses of type I and type II errors
suggest that the best approach to assuring accurate and
informative phylogenies is to employ a sufficiently com-
plex model and to accept bipartitions as true when their
posterior probability are moderately high (0.7 < deci-
sion threshold < 0.9). Based on the results of this study,
there appears to be little advantage to requiring poste-
rior probabilities to be very near 1 when an adequate
model is available. When an adequate model is not avail-
able, however, the conservative approach would be to ac-
cept bipartitions as true only when they have very high
posterior probabilities (e.g., >0.9). These conclusions are
based on results obtained under the particular set of con-
ditions we examined here. Clearly, more research investi-
gating the factors affecting error in phylogeny estimates
is needed.

Model overparameterization also carries a cost: inclu-
sion of unnecessary parameters can lead to decreased
precision in estimates of branch lengths and other model
parameters, as suggested by Cunningham et al. (1998).
We have also seen in the case of the inverse Felsenstein
zone that model overparameterization can sometimes
lead to slightly biased estimates of bipartition poste-
rior probabilities, although this bias is expected to de-
crease with increased sequence length. There are two
additional negative consequences of model overparam-
eterization that we have not investigated here: (1) com-
putation time is likely to increase rapidly with the com-
plexity of the model assumed, especially when data sets
are large (Lemmon and Milinkovitch, 2002), and (2) over-
parameterization may affect the convergence of Markov
chains (see Huelsenbeck et al., 2002, for a discussion of
convergence).

If appropriate model assumption is so important, how
are we to identify an appropriate model? Two steps
should be taken to assure that a proper model is as-
sumed. First, before a Bayesian analysis is performed,
one should identify the available model that best fits
the data set. Several methods facilitate this choice, in-
cluding the likelihood-ratio test (Goldman, 1993), the
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Akaike information criterion (Akaike, 1974), and the
Bayesian information criterion (Schwarz, 1974). Posada
and Crandall (2001) compared the performance of these
methods in detail and found that the likelihood-ratio test
was more accurate than the Akaike and Bayesian infor-
mation methods under some conditions. None of these
methods tell us whether or not a particular model ad-
equately describes a particular data set; they are useful
only for choosing the best model among a set that may
or may not contain an adequate model. There is some
evidence that when all of the available models are in-
adequate, the hierarchical likelihood-ratio test performs
poorly relative to other model selection methods (Minin
et al,, 2003). Another disadvantage of the commonly
used likelihood-ratio test is that it is appropriate only for
choosing among nested models. When unnested mod-
els are being compared, an alternative method should
be used, such as parametric bootstrapping (Goldman,
1993) or the recently developed decision theory meth-
ods (Minin et al., in 2003). Both of these methods also
can be used to test for absolute goodness of fit of the
model to the data set.

Second, following a Bayesian analysis, one should per-
form model-adequacy tests to assure that the model as-
sumed in the analysis adequately explains the observed
data. Model adequacy can be tested, for example, us-
ing posterior predictive distributions, as described by
Bollback (2002). With this method, the posterior proba-
bility distribution from a Bayesian analysis is used to sim-
ulate numerous data sets (the posterior predictive distri-
bution). The simulated data sets are then compared with
the observed data (the one used in the Bayesian analysis).
When the assumed model is adequate, the properties of
the simulated data sets (e.g., the distribution of site pat-
terns) are congruent with the properties of the observed
data. However, when the assumed model is inadequate
the properties of the simulated data sets will not be con-
gruent with those of the observed data. In this case, the
researcher should be very cautious when interpreting the
results of a Bayesian analysis and perhaps should con-
tinue to search for a more appropriate model with which
to reanalyze the data set.

Numerous models have been developed in an at-
tempt to account for one or another of the complex-
ities of sequence evolution, including temporal varia-
tion in base frequencies (Lockhart et al., 1994; Galtier
and Gouy, 1998), temporal variation in rates of evolu-
tion (Sanderson, 1997; Thorne et al., 1998; Huelsenbeck
et al., 2000; Kishino et al., 2001), base-pairing interac-
tions of RNA (Muse, 1995; Tillier and Collins, 1998), cor-
relation between rates of adjacent sites (Felsenstein and
Churchill, 1996), different rates of synonymous and non-
synonymous substitutions (Goldman and Yang, 1994;
Muse and Gaut, 1994), effects of selection on protein-
coding regions (Halpern and Bruno, 1998; Nielsen and
Yang, 1998), and insertions or deletions (McGuire et al.,
2001). However, consideration of these models in phy-
logenetic studies has yet to become common practice.
Four reasons likely contribute to the lack of use of
these more complex models: (1) most of these models

are not implemented in commonly used phylogenetic
analysis packages (although recent versions of MrBayes
have improved in this respect), (2) these models typi-
cally require much greater computational effort, (3) com-
monly used model selection methods (such as hierarchi-
cal likelihood-ratio tests) are restricted to nested models,
and (4) justification for the use of more complex models
is still insufficient.

Given the well-demonstrated cost to model misspeci-
fication and the general reluctance of systematists to con-
sider the use of more complex models, how should we
proceed? First, the adequacy of available models needs
to be assessed on a broad scale using real data sets. Al-
though the intuition of many systematists suggests that
our models are inadequate, no large-scale test of model
adequacy has been performed. If we discover that the
current set of available models is inadequate with re-
spect to most real data sets, then more research should be
conducted to identify the properties of sequence evolu-
tion that are inappropriately being ignored, and models
should be developed to account for those complexities.
Second, we should develop computationally feasible and
broadly applicable (i.e., not restricted to nested models)
methods of model choice and subsequently test the abso-
lute and relative performance of these methods. The ab-
solute and relative performances of model choice meth-
ods are especially important because different methods
are likely to disagree on which model is most appro-
priate. For example, the hierarchical likelihood-ratio test
and the Akaike information criterion for model choice
chose the same model approximately 25% of the time
when several hundred empirical data sets were analyzed
(A. R. Lemmon, unpubl. data). Third, enough models
should be incorporated into phylogenetic analysis pack-
ages to assure that adequate models are available for
most real data sets.

The goals of this study were to determine the ef-
fects of model misspecification on the estimation of phy-
logeny and substitution model parameters in the context
of Bayesian phylogenetics. The results of this study are
congruent with those from previous studies of model
choice outside of the Bayesian context (Golding, 1983;
Kuhner and Felsenstein, 1994; Yang et al., 1994; Sullivan
etal., 1995; Lockhart etal., 1996) and therefore underscore
the importance of proper model assumption. Given the
bias that may result from underparameterization and the
imprecision that may result from overparameterization,
we strongly caution researchers to refrain from choosing
models haphazardly (e.g., by assuming the most com-
plex model that is computationally feasible or by assum-
ing the model that happens to be the default in their
favorite phylogenetic inference package). Careful con-
sideration of the caveats resulting from studies of the
importance of proper model choice will enable systema-
tists to have greater confidence in their choice of models
and estimates of phylogeny.
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